26.已知:如图.抛物线关于轴对称,抛物线关于y轴对称.抛物线与x轴相交于A.B.C.D四点,与y相交于E.F两点,H.G.M分别为抛物线的顶点.HN垂直于x轴.垂足为N.且 (1)A.B.C.D.E.F.G.H.M9个点中.四个点可以连接成一个四边形.请你用字母写出下列特殊四边形:菱形 ,等腰梯形 ,平行四边形 ,梯形 ,(每种特殊四边形只能写一个.写错.多写记0分) (2)证明其中任意一个特殊四边形, (3)写出你证明的特殊四边形的性质. 结束语:请你仔细检查一遍.可能会有意外的收获.祝你成功! 湖北省十堰市2005年城区初中毕业生学业考试 查看更多

 

题目列表(包括答案和解析)

已知:如图,抛物线关于轴对称;抛物线关于y轴对称。抛物线与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线的顶点。HN垂直于x轴,垂足为N,且
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形_____ ;等腰梯形_____ ;平行四边形_____ ;梯形_____ ;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质。

查看答案和解析>>

已知:如图,抛物线关于轴对称;抛物线关于y轴对称。抛物线与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线的顶点。HN垂直于x轴,垂足为N,且

(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形      ;等腰梯形     ;平行四边形     ;梯形      ;(每种特殊四边形只能写一个,写错、多写记0分)

(2)证明其中任意一个特殊四边形;

(3)写出你证明的特殊四边形的性质。

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c(a≠O)经过X轴上的两点A(x1,0)、B(x2,0)和y轴上的点C(0,-
3
2
),⊙P的圆心P在y轴上,且经过B、C两点,若b=
3
a,AB=2
3

(1)求抛物线的解析式;
(2)设D在抛物线上,且C,D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P,精英家教网并说明理由;
(3)设直线BD交⊙P于另一点E,求经过E点的⊙P的切线的解析式.

查看答案和解析>>

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c与x轴交于点A(数学公式,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比数学公式(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:数学公式数学公式,结果精确到0.001)

查看答案和解析>>


同步练习册答案