如图.在直角坐标系中.O是坐标原点.A.B.C三点的坐标分别为A.四边形OABC是梯形.点P.Q同时从原点出发.分别作匀速运动.其中点P沿OA向终点A运动.速度为每秒1个单位.点Q沿OC.CB向终点B运动.当这两点有一点到达自己的终点时.另一点也停止运动. (1) 求出直线OC的解析式及经过O.A.C三点的抛物线的解析式, 中的抛物线上找一点D.使得以O.A.D为顶点的三角形与三角形AOC全等.请直接写出点D的坐标. (3) 设从出发起.运动了t秒.如果点Q的速度为每秒2个单位.试写出点Q的坐标.并写出此时t的取值范围. (4) 设从出发起.运动了t秒.当P.Q两点运动的路程之和恰好等于梯形OABC周长一半.这时.直线PQ能否把梯形的面积也分成相等的两部分.如有可能.请求出t的值,如不可能.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)
如图是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.

【小题1】(1) 求出抛物线的解析式;
【小题2】(2) 经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位.

查看答案和解析>>

(本题满分14分)

如图是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.

1.(1) 求出抛物线的解析式;

2.(2) 经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位.

 

查看答案和解析>>

(本题满分14分)

如图是某市一条河上一座古拱挢的截面图,拱桥桥洞上沿是抛物线形状,抛物线拱桥处于正常水位时水面宽AB为26m,当水位上涨1m时,抛物线拱桥的水面宽CD为24m.现以水面AB所在直线为x轴,抛物线的对称轴为y轴建立直角坐标系.

1.(1) 求出抛物线的解析式;

2.(2) 经过测算,水面离拱桥顶端1.5m时为警戒水位.某次洪水到来时,小明用仪器测得水面宽为10m,请你帮助小明算一算,此时水面是否超过警戒水位.

 

查看答案和解析>>

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).

1.(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).

①求当t为多少时,四边形PQAB为平行四边形?(4分)

②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)

2.(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>

.(本题满分12分) 如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).

1.(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).

①求当t为多少时,四边形PQAB为平行四边形?(4分)

②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式. (4分)

2.(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标. (4分)

查看答案和解析>>


同步练习册答案