如图.AB.AC分别是⊙O的直径和弦.D为劣弧上一点.DE⊥AB于点H.交⊙O于点E.交AC于占F.P为ED的延长线上一点. (1)点D在劣弧的什么位置时.才能使.为什么? (2)当PC=PF时.求证:PC与⊙O相切. 查看更多

 

题目列表(包括答案和解析)

1.        (本题满分10分)如图,在△ABC中,边ABAC的垂直平分线分别交BCDE

(1)若BC=10,则△ADE周长是多少?为什么?

(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分10分)如图,在△ABC中,边ABAC的垂直平分线分别交BCDE
(1)若BC=10,则△ADE周长是多少?为什么?
(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?

查看答案和解析>>

(本题满分10分)如图,在△ABC中,边ABAC的垂直平分线分别交BCDE
(1)若BC=10,则△ADE周长是多少?为什么?
(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?

查看答案和解析>>

1.         (本题满分10分)如图,在△ABC中,边ABAC的垂直平分线分别交BCDE

(1)若BC=10,则△ADE周长是多少?为什么?

(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

  (本小题满分12分)
小题1: (1)观察发现
如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P
再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为       . (2分)

小题2:(2)实践运用
如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

小题3:(3)拓展延伸
如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.  (5分)

查看答案和解析>>


同步练习册答案