题目列表(包括答案和解析)
已知⊙O的半径为1,以O为原点,建立如图所示的直角坐标系,有一个正方形ABCD,顶点B的坐标为
,顶点A在x轴上方,顶点D在⊙O上运动.
(1)求tan∠DBO的最大值;
(2)设正方形ABCD的面积为S,求S的取值范围;
(3)在顶点D运动的过程中,是否存在正方形ABCD的边CD与⊙O相功的情况?若存在,请确定此时DC与x轴的交点P的坐标;若不存在,请说明理由.
![]()
问题情境:
用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?
![]()
建立模型:
有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.
解决问题:
根据以上步骤,请你解答“问题情境”.
![]()
【解析】此题把规律问题借助函数思想来探讨,主要培养学生的应变能力和空间想象能力
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com