29. 如图所示.在直角坐标系中.矩形OBCD的边长OB=m.OD=n.m >n.m.n是方程的两个根. ⑴ 求m和 n, ⑵ P是OB上一个动点.动点 Q在 PB或其延长线上运动.OP=PQ.作以 PQ为一边的正方形PQRS.点P从O点开始沿射线OB方向运动.设OP=X.正方形PQRS与矩形OBCD重叠部分的面积为y.写出y与x的函数关系式.并画出函数图像, ⑶ 已知直线l:y=ax-a都经过一定点A.求经过定点A且把矩形OBCD面积分成相等两部分的直线l的解析式和A点的坐标. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

如图所示,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧),已知点坐标为().

 

 

 

 

 

 

 

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点

如果以点为圆心的圆与直线相切,请判断抛物

线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于

两点之间,问:当点运动到什么位置时,

面积最大?并求出此时点的坐标和的最大面积.

 

查看答案和解析>>

(本题满分12分)我们设想用电脑模拟台球游戏,为简单起见,约定:①每个球袋视为一个点,如果不遇到障碍,各球均沿直线前进;②A球击B球,意味着B球在A球前进的路线上,且B球被撞击后沿A球原来的方向前进;③球撞击桌边后的反弹角度等于入射角度,(如图中∠β=∠a)如图所示,设桌边只剩下白球,A,6号球B。

(1)希望A球撞击桌边上C点后反弹,再击中B球,请给出一个算法,告知电脑怎样找到点C,并求出C点的坐标。

(2)设桌边RQ上有一球袋S(100,120),判定6号球B被从C点反弹出的白球撞击后能否直接落入球袋S中,(假定6号球被撞后速度足够大)。

(3)若用白球A直接击打6号球B,使6号球B撞击桌边OP上的D点后反弹,问6号球B从D点反弹后能否直接进入球袋Q中?(假定6号球被撞后速度足够大)

 

查看答案和解析>>

(本题满分12分)
如图所示,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为().

(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点
如果以点为圆心的圆与直线相切,请判断抛物
线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
两点之间,问:当点运动到什么位置时,
面积最大?并求出此时点的坐标和的最大面积.

查看答案和解析>>

(本题满分12分)如图所示,在平面直角坐标系中,矩形ABOC的边OB在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得矩形EFOD. 点A的对应点为点E,点B的对应点为F,点C的对应点为点D. 抛物线过点A、E、D.

【小题1】(1) 判断点E是否在y轴上,并说明理由;
【小题2】(2)求抛物线的解析式;
【小题3】(3)在x 轴的上方是否存在点P、Q,使以点O、B、P、Q为顶点的平行四边形的面积是矩形ABOC的面积的2倍,且点P在抛物线上,若存在,求P、Q两点的坐标,若不存在,请说明理由。

查看答案和解析>>

(本题满分12分)我们设想用电脑模拟台球游戏,为简单起见,约定:①每个球袋视为一个点,如果不遇到障碍,各球均沿直线前进;②A球击B球,意味着B球在A球前进的路线上,且B球被撞击后沿A球原来的方向前进;③球撞击桌边后的反弹角度等于入射角度,(如图中∠β=∠a)如图所示,设桌边只剩下白球,A,6号球B。
(1)希望A球撞击桌边上C点后反弹,再击中B球,请给出一个算法,告知电脑怎样找到点C,并求出C点的坐标。
(2)设桌边RQ上有一球袋S(100,120),判定6号球B被从C点反弹出的白球撞击后能否直接落入球袋S中,(假定6号球被撞后速度足够大)。
(3)若用白球A直接击打6号球B,使6号球B撞击桌边OP上的D点后反弹,问6号球B从D点反弹后能否直接进入球袋Q中?(假定6号球被撞后速度足够大)

查看答案和解析>>


同步练习册答案