为圆心的圆C与直线相切 求(1)圆C的方程 (2)轴被圆C所截得的弦长 查看更多

 

题目列表(包括答案和解析)

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

(本题满分12分)已知椭圆的标准方程为.

(1)求椭圆的长轴和短轴的大小;

(2)求椭圆的离心率;

(3)求以此椭圆的长轴端点为短轴端点,并且经过点P(-4,1)的椭圆方程.

 

查看答案和解析>>

(本题满分12分)已知椭圆的标准方程为.
(1)求椭圆的长轴和短轴的大小;
(2)求椭圆的离心率;
(3)求以此椭圆的长轴端点为短轴端点,并且经过点P(-4,1)的椭圆方程.

查看答案和解析>>

 

(本小题12分)

已知椭圆C的左右焦点坐标分别是(-1,0),(1, 0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。

(1)求椭圆C的方程;

(2)若圆P恰过坐标原点,求圆P的方程;

 

查看答案和解析>>


(本小题12分)
已知椭圆C的左右焦点坐标分别是(-1,0),(1,0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。
(1)求椭圆C的方程;
(2)若圆P恰过坐标原点,求圆P的方程;

查看答案和解析>>


同步练习册答案