题目列表(包括答案和解析)
(本小题满分14分)
已知圆
方程为:
.
(Ⅰ)直线
过点
,且与圆
交于
、
两点,若
,求直线
的方程;
(Ⅱ)过圆
上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
,求动点
的轨迹方程,并说明此轨迹是什么曲线.
(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
(本小题满分14分)已知点F椭圆E:
的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且
是边长为2的正三角形;又椭圆E上的P、Q两点关于直线
对称.
(1)求椭圆E的方程;(2)当直线
过点(
)时,求直线PQ的方程;
(3)若点C是直线
上一点,且
=
,求
面积的最大值.
![]()
(本小题满分14分)
已知椭圆中心
在坐标原点,焦点在
轴上,且经过
、
、
三点.
(1)求椭圆
的方程:
(2)若点
为椭圆
上不同于
、
的任意一点,
,当
内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线
与椭圆
交于
、
两点,证明直线
与直线
的交点在直线
上.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com