题目列表(包括答案和解析)
已知数列
的通项公式是:
,若前n项和
,则n的值是
A.120 B.121 C.11 D.99
已知数列
的前n项和
,满足:
三
点共线(a为常数,且
).
(Ⅰ)求
的通项公式;
(Ⅱ)设
,若数列
为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,设
,数列
的前n项和为
,是否存在最小的整数m,使得任意的n均有
成立?若存在,求出
的值;若不存在,请说明理由.
已知数列
的前n项和
,数列
有
,
(1)求
的通项;
(2)若
,求数列
的前n项和
.
【解析】第一问中,利用当n=1时,![]()
当
时,![]()
得到通项公式
第二问中,∵
∴
∴数列
是以2为首项,2为公比的等比数列,利用错位相减法得到。
解:(1)当n=1时,
……………………1分
当
时,
……4分
又![]()
∴
……………………5分
(2)∵
∴
∴
……………………7分
又∵
,
∴ ![]()
∴数列
是以2为首项,2为公比的等比数列,
∴
……………………9分
∴
∴
①
②
①-②得:![]()
∴![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com