题目列表(包括答案和解析)
(本小题满分14分)已知椭圆
的中心在坐标原点,焦点在
轴上,长轴长为
,离心率为
,经过其左焦点
的直线
交椭圆
于
、
两点(I)求椭圆
的方程;
(II)在
轴上是否存在一点
,使得
恒为常数?若存在,求出
点的坐标和这个常数;若不存在,说明理由.
(本小题满分14分)已知椭圆
:
的离心率是
,其左、右顶点分别为
,
,
为短轴的端点,△
的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
为椭圆
的右焦点,若点
是椭圆
上异于
,
的任意一点,直线
,
与直线
分别交于
,
两点,证明:以
为直径的圆与直线
相切于点
.
(本小题满分14分)
已知椭圆
的离心率为
,其中左焦点F(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,
求m的值.
(本小题满分14分)
已
知椭圆
的离心率为
其左、右焦
点分别为
,点P是坐标平面内一点,且
(O为坐标原点)。
(1)求椭圆C的方程;
(2)
过点
且斜率为k的动直线
交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标;若不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com