在Rt△ABC中.∠C=Rt∠.c=4,b=2,求边a,及∠A.∠B. 查看更多

 

题目列表(包括答案和解析)

已知:在Rt△ABC中,∠C=90°,∠A=2∠B,AB=6,求∠A、∠B的度数及边AC、BC的长。

查看答案和解析>>

如图①,在6×12的方格纸MNEF中,每个小正方形的边长都是1。Rt△ABC的顶点C与N重合,两直角边AC、BC分别在加MN、NE上,且AC=3,BC=2.现Rt△ABC以每秒1个单位长的速度向右平移,当点B移动至点E时,Rt△ABC停止移动。     
(1)请你在答题卡所附的6×12的方格纸①中,画出Rt△ABC向右平移4秒时所在的图形;    
(2)如图②,在Rt△ABC向右平移的过程中,△ABF能否成为直角三角形?如果能,请求出相应的时间t,如果不能,请简要说明理由;     
(3)如图②,在Rt△ABC向右平移的过程中(不包括平移的开始与结束时刻),其外接圆与直线AF、直线BF分别有哪几种位置关系?请直接写出这几种位置关系及所对应的时间t的范围(不必说理)

查看答案和解析>>

如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点Ax轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为DAE为折痕,E在y轴上。

(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。

(2)线段AD上有一动点P(不与AD重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PMDEAEM点,过点MMNADDEN点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?

(3)当t(0<t<3)为何值时,ADM三点构成等腰三角形?并求出点M的坐标。

         图10

查看答案和解析>>

如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。
(1)在图所示的直角坐标系中,求E点的坐标及AE的长;
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标。

查看答案和解析>>

(2011贵州六盘水,25,16分)如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。

(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。

(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?

(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标。

 

查看答案和解析>>


同步练习册答案