题目列表(包括答案和解析)
(本题满分14分)
如图,在四棱锥
中,底面
ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点,作
交PB于点F。
(I)证明
平面
;
(II)证明
平面EFD;
(III)求二面角
的大小。
如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )
![]()
A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC
C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC
(本题满分14分)
如图,在四棱锥
中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点,作
交PB于点F。
(I)证明
平面
;
(II)证明
平面EFD;
(III)求二面角
的大小。
(本题满分14分)
如图,在四棱锥
中,底面
ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点,作
交PB于点F。![]()
(I)证明
平面
;
(II)证明
平面EFD;
(III)求二面角
的大小。
如图,在直四棱柱ABCD-A
B
C
D
中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA
=2, E、E
、F分别是棱AD、AA
、AB的中点。
(1) 证明:直线EE
//平面FCC
;
(2) 求二面角B-FC
-C的余弦值。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com