(理)已知函数f(x)在上有定义.f()=-1,当且仅当0<x<1时.f(x)<0,且对任意x.y∈?,?都有f(x)+f(y)=f().试证明: (Ⅰ)f(x)为奇函数, (Ⅱ)f(x)在上单调递减, (Ⅲ)1+f()+f()+-+f(=0.(n∈N*) (文)已知函数f(x)在上有定义.f()=-1.当且仅当0<x<1时.f(x)<0,且对任意x.y∈?,?都有f(x)+f(y)=f().试证明: (Ⅰ)f(0)=0且f(x)为奇函数, (Ⅱ)若对数列{xn}满足:x1=,xn+1=,?求f(xn);? 的条件下.求. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)
已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).

(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;

(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];

(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.

 

 

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).

(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;

(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];

(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.

 

 

查看答案和解析>>

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>

(本小题满分14分)已知函数f(x)=aexg(x)= lna-ln(x +1)(其中a为常数,e为自然对数底),函数y =f(x)在A(0,a)处的切线与y =g(x)在B(0,lna)处的切线互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求证:对任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 设y =g(x-1)的图象为C1h(x)=-x2+bx的图象为C2,若C1C2相交于PQ,过PQ中点垂直于x轴的直线分别交C1C2MN,问是否存在实数b,使得C1M处的切线与C2N处的切线平行?说明你的理由.

查看答案和解析>>


同步练习册答案