题目列表(包括答案和解析)
(本小题满分12分)
已知函数
的定义域为R, 对任意实数
都有
,
且
, 当
时,
.
(1) 求
;
(2) 判断函数
的单调性并证明.
(本小题12分)若存在实常数
和
,使得函数
和
对其定义域上的任意实数
分别满足
和
,则称直线
为
和
的“隔离直线”.已知
,
(其中
为自然对数的底数).
(1) 判断函数
的零点个数并证明你的结论;
(2) 函数
和
是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(本小题满分12分)
已知函数
是定义域为
的奇函数,(1)求实数
的值;(2)证明
是
上的单调函数;(3)若对于任意的
,不等式
恒成立,求
的取值范围.
(本小题12分)已知
(
).
(1)判断函数
的奇偶性,并证明;
(2)若
,用单调性定义证明函数
在区间
上单调递减;
(3)是否存在实数
,使得
的定义域为
时,值域为
,若存在,求出实数
的取值范围;若不存在,则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com