如图.△ABC中.AC=BC.以BC为直径的⊙O交AB于点D.过点D作DE⊥AC于点E.交BC的延长线于点F. 求证:(1)AD=BD, (2)DF是⊙O的切线. 查看更多

 

题目列表(包括答案和解析)

(本大题10分)(本大题有两题,请同学们选择你喜欢且拿手一题解答)

如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动。设动点运动时间为t秒。

(1)求AD的长.(3分)

(2)当△PDC的面积为15平方厘米时,求的值.(4分)

(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动。是否存在t,使得S△PMDS△ABC?若存在,请求出t的值;若不存在,请说明理由.(5分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本大题10分)(本大题有两题,请同学们选择你喜欢且拿手一题解答)

如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动。设动点运动时间为t秒。

(1)求AD的长.(3分)

(2)当△PDC的面积为15平方厘米时,求的值.(4分)

(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动。是否存在t,使得S△PMDS△ABC?若存在,请求出t的值;若不存在,请说明理由.(5分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分10分)

(1)如图24—1,已知△ABC中,∠BAC=45°,AB="AC," AD⊥BC于D, 将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果⑴中AB≠AC,其他不变,如图24—2.那么四边形AEGF是否是正方形?请说明理由.
(3)在⑵中,若BD=2,DC=3,求AD的长.

查看答案和解析>>

 (本题10分)如右图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,ABAEACAD,点MDE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明.

 

查看答案和解析>>

(本题10分)如右图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,ABAEACAD,点MDE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明.

查看答案和解析>>


同步练习册答案