解:(Ⅰ)∵AD与两圆所在的平面均垂直, ∴AD⊥AB, AD⊥AF,故∠BAD是二面角B-AD-F的平面角. 依题意可知.ABCD是正方形.所以∠BAD=450. 即二面角B-AD-F的大小为450, (Ⅱ)以O为原点.BC.AF.OE所在直线为坐标轴.建立空间直角坐标系.A(0..0).B(.0.0),D(0..8).E.F(0..0) 所以. 设异面直线BD与EF所成角为.则 直线BD与EF所成的角为 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

解答题:应写出文字说明、证明过程或演算步骤

如下图所示:四面体ABCD中,AB、BC、BD两两互相垂直,且AB=BC=2,E是AC中点,异面直线AD与BE所成角的余弦值为

(1)求二面角D—AC—B的大小;

(2)求二面角D—AC—B的正切值;

(3)求点B到平面ACD的距离.

查看答案和解析>>

如图所示,空间四边形ABCD中,AB,BC,BD两两垂直,AB=BC=2,E为AC的中点,异面直线AD与BE所成角的大小为arccos,求二面角D-AC-B的大小.

查看答案和解析>>

(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2

(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)
如图,若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD•DC=
7
7

(B)(极坐标系与参数方程选做题)
若直线l:x-
3
y=0
与曲线C:
x=a+
2
cos?
y=
2
sin?
(?
为参数,a>0)有两个公共点A、B,且|AB|=2,则实数a的值为
2
2

(C)(不等式选做题)
不等式|2x-1|-|x-2|<0的解集为
.
x 
  
.
-1<x<1
.
x 
  
.
-1<x<1

查看答案和解析>>


同步练习册答案