若关于x的一元二次方程.ax2-2x-1=0有实数根则a的取值范围为( ) A.a>-1 B.a≥-1 C.a>-1且a≠0 D.a≥-1且a≠0 查看更多

 

题目列表(包括答案和解析)

已知关于x的一元二次方程ax2+2x+1=0有两个实数根,
(1)求实数a的取值范围.
(2)若有两个相等的实数根,求a的值,并求此时方程的解.

查看答案和解析>>

已知关于x的一元二次方程ax2+2x+1=0有两个实数根,
(1)求实数a的取值范围.
(2)若有两个相等的实数根,求a的值,并求此时方程的解.

查看答案和解析>>

阅读下列材料:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1、x2,则x1+x2=-
b
a
x1x2=
c
a

解决下面问题:已知关于x的一元二次方程(2x+n)2=4x有两个非零不等实数根x1、x2,设m=
1
x1
+
1
x2

(1)求n的取值范围;
(2)试用关于n的代数式表示出m;
(3)是否存在这样的n值,使m的值等于1?若存在,求出这样的所有n的值;若不存在,请说明理由.

查看答案和解析>>

阅读下列材料:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1、x2,则
解决下面问题:已知关于x的一元二次方程(2x+n)2=4x有两个非零不等实数根x1、x2,设
(1)求n的取值范围;
(2)试用关于n的代数式表示出m;
(3)是否存在这样的n值,使m的值等于1?若存在,求出这样的所有n的值;若不存在,请说明理由.

查看答案和解析>>

所谓配方法其实就是逆用完全平方公式,即a2±2ab+b2=(a±b)2.该方法在数、式、方程等多方面应用非常广泛,如3+2=12+2+(2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.请你用配方法解决以下问题:
(1)解方程:x2=5+2;(不能出现形如的双重二次根式)
(2)若a2+4b2+c2-2a-8b+10c+30=0,解关于x的一元二次方程ax2-bx+c=0;
(3)求证:不论m为何值,解关于x的一元二次方程x2+(m-1)x+m-3=0总有两个不等实数根.

查看答案和解析>>


同步练习册答案