题目列表(包括答案和解析)
(本小题共14分)
如图,在
中,
,斜边
.
可以通过
以直线
为轴旋转得到,且二面角
是直二面角.动点
的斜边
上.
(I)求证:平面
平面
;
(II)当
为
的中点时,求异面直线
与
所成角的大小;
(III)求
与平面
所成角的最大值.
(07年北京卷理)(本小题共14分)
如图,在
中,
,斜边
.
可以通过
以直线
为轴旋转得到,且二面角
是直二面角.动点
的斜边
上.
![]()
(I)求证:平面
平面
;
(II)当
为
的中点时,求异面直线
与
所成角的大小;
(III)求
与平面
所成角的最大值.
(本小题共14分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
AD=1,CD=
.
![]()
(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .
(本小题共14分)如图,在三棱锥
中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
(本小题共14分)如图,四棱锥
中,底面
为平行四边形,
,
,
⊥底面
.
![]()
(1)证明:平面
平面
;
(2)若二面角
为
,求
与平面
所成角的正弦值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com