1) 2)棱数y=顶点数x+面数z-2 查看更多

 

题目列表(包括答案和解析)

.数一数长方体、四面体的面数、棱数和顶点数,并填下表:

名称

面数(f)

顶点数(v)

棱数(e)

长方形

四面体

查看答案和解析>>

多面体顶点数(V)面数(F)棱数(E)
四面体44______
长方体8______12
正八面体______812
正十二面体201230
18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是______.
(2)一个多面体的面数与顶点数相等,有12条棱,这个多面体是______面体.

查看答案和解析>>

多面体顶点数(V)面数(F)棱数(E)
四面体44______
长方体8______12
正八面体______812
正十二面体201230
18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是______.
(2)一个多面体的面数与顶点数相等,有12条棱,这个多面体是______面体.

查看答案和解析>>

15、从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体、其面数+顶点数-棱数=
2

查看答案和解析>>

29、长方体的顶点数、棱数、面数分别是(  )

查看答案和解析>>


同步练习册答案