如图:在Rt△ABC中.∠C=90°.CA=CB=2.分别以A.B.C为圆心.以 AC 为半径画弧.三条弧与边AB所围成的阴影部分的面积是___. 查看更多

 

题目列表(包括答案和解析)

如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm.动点M、N从点C同时出发,均以每秒1 cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2 cm的速度沿BA向终点A移动.连接PM、PN.设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A、P、M为顶点的三角形与△ABC相似?

(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

查看答案和解析>>

如图,在Rt△ABC中,∠B=90°,AB=1,BC,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E

(1)求AE的长度;

(2)分别以点AE为圆心,AB长为半径画弧,两弧交于点F(FCAB两侧),连接AFEF,设EF交弧DE所在的圆于点G,连接AG

①求证:△AEG∽△FEA

②试猜想∠EAG的大小,并说明理由.

查看答案和解析>>

(本题10分)如图,在Rt△ABC中,∠B=90°,AB=1,BC,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E

(1)求AE的长度;

   (2)分别以点AE为圆心,AB长为半径画弧,两弧交于点FFCAB两侧),连接AFEF,设EF交弧DE所在的圆于点G,连接AG

   ① 求证:△AEG∽△FEA

   ② 试猜想∠EAG的大小,并说明理由.

 

                                                                     

 

查看答案和解析>>

(本题10分)如图,在Rt△ABC中,∠B=90°,AB=1,BC,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E

(1)求AE的长度;

   (2)分别以点AE为圆心,AB长为半径画弧,两弧交于点FFCAB两侧),连接AFEF,设EF交弧DE所在的圆于点G,连接AG

    ① 求证:△AEG∽△FEA

    ② 试猜想∠EAG的大小,并说明理由.

 

                                                                     

 

查看答案和解析>>

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.

探究展示:小宇同学展示出如下正确的解法:

解:OM=ON,证明如下:

连接CO,则CO是AB边上中线,

∵CA=CB,∴CO是∠ACB的角平分线.(依据1)

∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)

反思交流:

(1)上述证明过程中的“依据1”和“依据2”分别是指:

依据1:________

依据2:________

(2)你有与小宇不同的思考方法吗?请写出你的证明过程.

拓展延伸:

(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>


同步练习册答案