设RtΔABC,∠C=90°,如果已知b和∠A,则c=b·cosA. ( ) 查看更多

 

题目列表(包括答案和解析)

(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是
O(0,0)
O(0,0)
,旋转角是
90
90
度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.

查看答案和解析>>

如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°;四边形DEFG为矩形,DE=2
3
cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.将Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止移动,设Rt△ABC与矩形DEFG重叠部分的面积为y,Rt△ABC平移的时间为x (s).
(1)求边AC的长;
(2)求y 与x 的函数关系式;
(3)当Rt△ABC移动至重叠部分的面积为y=
3
2
3
cm2时,将Rt△ABC沿边AB向上翻折,得到Rt△ABC′,请求出Rt△ABC′与矩形DEFG重叠部分的周长.
(4)点P从点D出发,沿矩形DEFG的边DE、EF、FG运动到点G停止.其中点P在DE边上的速度为2
3
cm/s
,在EF边上的速度为1cm/s,在FG边上的速度为4
3
cm/s
.若点P与△ABC同时运动,请直接写出点P落在△ABC内部(不含边)时运动时间x的取值范围.

查看答案和解析>>

精英家教网已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.
运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;
运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为
2
cm/s
,当QC⊥DF时暂停旋转;
运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.
设运动时间为t(s),中间的暂停不计时,
解答下列问题
(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时
 
s;
(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

设Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,根据下列所给条件求∠B的四个三角函数值:(自己画图)
(1)a=1,c=2;(2)a=5,b=12.

查看答案和解析>>

将火柴盒ABCD推倒后,如图A所示,AB=CE,BC=EF,∠B=E=90°.
精英家教网
①连接AC、CF,并擦去AD、DC、GF,则得图B,根据图B说明:AC=CF;
②在①说明过程中,你还能得到哪些些结论,把它写下来,写满3个正确结论得2分,每多写一个正确结论加1分,不必说明理由;
③在图B中,请你连接AF,则四边形ACEF为梯形.设Rt△ABC的三边长如图所示,请你用两种不同的方法将梯形ABEF的面积S,用a、b、c表示出来;
④根据③的结论,你猜想Rt△ABC的三边长a、b、c之间有何数量关系?

查看答案和解析>>


同步练习册答案