2. 如图:在⊙O中. ⑴若MN⊥AB.MN为直径则 , , ; ⑵若AC=BC.MN为直径.AB不是直径.则 , , ; ⌒ ⌒ ⑶若MN⊥AB.AC=BC则 , , ; ⑷若AM=BM.MN为直径.则 , , ; 查看更多

 

题目列表(包括答案和解析)

(1)观察发现
  如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
  作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.

  如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为______.
(2)实践运用
  如图(3):已知⊙O的直径CD为2,数学公式的度数为60°,点B是数学公式的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为______.

(3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.

查看答案和解析>>

(2013•六盘水)(1)观察发现
   如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
   作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.

   如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为
3
3

 (2)实践运用
   如图(3):已知⊙O的直径CD为2,
AC
的度数为60°,点B是
AC 
的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为
2
2


  (3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.

查看答案和解析>>

给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则底面半径和母线之比为1:2;(2)若点A在直线y=2x-3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;
(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;(4)若A(a,m)、B(a -1,n)(a0)在反比例函数的图象上,则mn.其中,正确命题的个数是

A.1个B.2个C.3个D.4个

查看答案和解析>>

给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则底面半径和母线之比为1:2;(2)若点A在直线y=2x-3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;

(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;(4)若A(a,m)、B(a -1,n)(a0)在反比例函数的图象上,则mn.其中,正确命题的个数是

A.1个             B.2个              C.3个              D.4个

 

查看答案和解析>>

给出下列四个命题:(1)如果某圆锥的侧面展开图是半圆,则底面半径和母线之比为1:2;(2)若点A在直线y=2x-3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;
(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;(4)若A(a,m)、B(a -1,n)(a0)在反比例函数的图象上,则mn.其中,正确命题的个数是
A.1个B.2个C.3个D.4个

查看答案和解析>>


同步练习册答案