题目列表(包括答案和解析)
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∠1=∠A(已作)
∴AB∥CD ( )
∴∠B= ∠2 ( )
而∠ACB+∠1+∠2=180°
∴∠ACB+ ∠B + ∠A =180°( )
![]()
解:(1)如图①AH=AB
(2)数量关系成立.如图②,延长CB至E,使BE=DN
∵ABCD是正方形
∴AB=AD,∠D=∠ABE=90°
∴Rt△AEB≌Rt△AND
∴AE=AN,∠EAB=∠NAD
∴∠EAM=∠NAM=45°
∵AM=AM
∴△AEM≌△ANM
∵AB、AH是△AEM和△ANM对应边上的高,
∴AB=AH
(3)如图③分别沿AM、AN翻折△AMH和△ANH,
得到△ABM和△AND
∴BM=2,DN=3,∠B=∠D=∠BAD=90°
分别延长BM和DN交于点C,得正方形ABCE.
由(2)可知,AH=AB=BC=CD=AD.
设AH=x,则MC=
, NC=
图②
在Rt⊿MCN中,由勾股定理,得
∴![]()
解得
.(不符合题意,舍去)
∴AH=6.
解:(1)△AFB∽△FEC.
证明:由题意得:∠AFE=∠D=90° 又∠B=∠C=90°
∴∠BAF+∠AFB=90° , ∠EFC+∠AFB=90°
∴∠BAF=∠EFC ∴ AFB∽△FEC
(2)设EC=3x,FC=4x,则有DE=EF=5x ,∴AB=CD=3x+ 5x=8x
由△AFB∽△FEC得:
即:
=
∴BF=6x ∴BC=BF-CF=6x+ 4x= 10x
∴在Rt△ADE中,AD=BC=10x,AE=
,则有![]()
解得
(
舍去) ∴AB+BC+CD+DA=36x=36(cm) 答:矩形ABCD的周长为36cm.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com