题目列表(包括答案和解析)
反比例函数y=
(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=
,故ab=k,所以S=|k|(如图(1)).
这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:
例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=
(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.
解答:
=|k|
=|k|
故
=![]()
例2:如图(3),在y=
(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有( )
![]()
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵
=
|k|=
,
=
|k|=![]()
=
|k|=![]()
S1=S2=S3,故选A.
例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.
![]()
解答:∵S△AOM=
|k|
又S△AOM=3,
∴
|k|=3,|k|=6
∴k=±6
又∵曲线在第三象限
∴k>0∴k=6
∴所以反比例函数的解析式为y=
.
根据是述意义,请你解答下题:
如图(5),过反比例函数y=
(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得
![]()
A.S1>S2
B.S1=S2
C.S1<S2
D.大小关系不能确定
已知二次函数y=x2-(2m+1)x+m2-1.
(1)如果该函数的图象经过原点,请求出m的值及此时图象与x轴的另一个交点的坐标;
(2)如果该函数的图象的顶点在第四象限,请求出m的取值范围;
(3)若把(1)中求得的函数图象沿其对称轴上下平行移动,使顶点移到直线y=
x上,请求出此时函数的解析式.
已知二次函数y=x2+bx+c的图象经过(1,0),(2,5)两点.
(1)求这个二次函数的解析式;
(2)请你换掉题目中的已知条件,重新设计一个求二次函数y=x2+bx+c的解析式的题目,使所得的二次函数与(1)中的相同.
平移二次函数y=x2-3x+5的图象,使它经过原点,写出一个平移后所得图象表示的二次函数的解析式________.
已知二次函数y=(t+1)x2+2(t+2)x+
在x=0和x=2时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com