若M.N.P三点都在函数(k<0=的图象上.则的大小关系为( ) A.>> B.>> C.>> D.>> 查看更多

 

题目列表(包括答案和解析)

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

已知二次函数中,其函数与自变量之间的部分对应值如下表所示:

x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)当x=-1时,y的值为      
(2)点A()、B()在该函数的图象上,则当时,的大小关系是      
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:      
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】

查看答案和解析>>

已知二次函数中,其函数与自变量之间的部分对应值如下表所示:

x

……

0

1

2

3

4

5

……

y

……

4

1

0

1

4

9

……

(1)当x=-1时,y的值为      

(2)点A()、B()在该函数的图象上,则当时,的大小关系是      

(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:      

(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】

 

查看答案和解析>>

已知二次函数中,其函数与自变量之间的部分对应值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)当x=-1时,y的值为      
(2)点A()、B()在该函数的图象上,则当时,的大小关系是      
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:      
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】

查看答案和解析>>

若点A(x1,y1)、B(x2,y2)都在反比例函数y=-的图像上,若x1<x2时,y1>y2,则点B(x2,y2)在第几象限.

[  ]

A.

B.

C.

D.

查看答案和解析>>


同步练习册答案