用换元法解方程: [解]设.那么. 于是原方程变形为 方程的两边都乘以y.约去分母.并整理.得 解这个方程.得. 当时..即 解这个方程.得 当时..即 因为.所以.这个方程没有实数根 经检验.都是原方程的根. 原方程的根是 查看更多

 

题目列表(包括答案和解析)

换元法是把一个比较复杂的数学式子的一部分看成是一个整体,用另一个字母代替这一部分(即换元).换元法的好处是能使式子得到简化,各项的关系容易看清,便于解决问题.此方法充分体现了整体的数学思想.例如:用换元法解分式方程
2x-1
x
-
x
2x-1
=2
时,如果设
2x-1
x
=y
,并将原方程化为关于y的整式方程,那么这个整式方程是y2-2y-1=0,然后在解出y1和y2,再将y1和y2替换成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.请用换元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

换元法是把一个比较复杂的数学式子的一部分看成是一个整体,用另一个字母代替这一部分(即换元).换元法的好处是能使式子得到简化,各项的关系容易看清,便于解决问题.此方法充分体现了整体的数学思想.例如:用换元法解分式方程数学公式时,如果设数学公式,并将原方程化为关于y的整式方程,那么这个整式方程是y2-2y-1=0,然后在解出y1和y2,再将y1和y2替换成数学公式数学公式,即可解出x1和x2.请用换元法解方程:数学公式

查看答案和解析>>

换元法是把一个比较复杂的数学式子的一部分看成是一个整体,用另一个字母代替这一部分(即换元).换元法的好处是能使式子得到简化,各项的关系容易看清,便于解决问题.此方法充分体现了整体的数学思想.例如:用换元法解分式方程时,如果设,并将原方程化为关于y的整式方程,那么这个整式方程是y2-2y-1=0,然后在解出y1和y2,再将y1和y2替换成,即可解出x1和x2.请用换元法解方程:

查看答案和解析>>

换元法是把一个比较复杂的数学式子的一部分看成是一个整体,用另一个字母代替这一部分(即换元).换元法的好处是能使式子得到简化,各项的关系容易看清,便于解决问题.此方法充分体现了整体的数学思想.例如:用换元法解分式方程时,如果设,并将原方程化为关于y的整式方程,那么这个整式方程是y2-2y-1=0,然后在解出y1和y2,再将y1和y2替换成,即可解出x1和x2.请用换元法解方程:

查看答案和解析>>

19、阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0  ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用
换元
法达到
降次
的目的,体现了数学的转化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>


同步练习册答案