2.弧.弦.圆心角的关系 [例2]如图.AB.CD是⊙O的直径.DF.BE是弦.且DF=BE. 求证:∠D=∠B 查看更多

 

题目列表(包括答案和解析)

圆心角定理是“圆心角的度数与它所对的弧的度数相等”,记作∠AOB=
1
2
(
AB
+
CD)
(如图①);
圆心角定理也可以叙述成“圆心角度数等于它所对的弧及圆心角的对顶角所对的弧的和的一半”,
记作∠AOB=
1
2
(弧AB的度数+弧CD的度数)(如图①)
请回答下列问题:
(1)如图②,猜测∠APB与
AB
CD
有怎样的等量关系,并说明理由;
(2)如图③,猜测∠APB与
AB
CD
有怎样的等量关系,并说明理由.
(提示:“两条平行弦所夹的弧相等”可当定理用)
精英家教网

查看答案和解析>>

6、已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.
(1)求证:BE是⊙O2的切线;
(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)
(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)

查看答案和解析>>

(2001•沈阳)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.
(1)求证:BE是⊙O2的切线;
(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)
(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)

查看答案和解析>>

(2001•沈阳)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.
(1)求证:BE是⊙O2的切线;
(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)
(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)

查看答案和解析>>

(2001•沈阳)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.
(1)求证:BE是⊙O2的切线;
(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)
(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)

查看答案和解析>>


同步练习册答案