能根据问题查找有关资料.获得数据信息,对日常生活中的某些数据发表自己的看法. 查看更多

 

题目列表(包括答案和解析)

利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?
如图,一个边长为1的正方形,依次取正方形的,根据图示我们可以知道:第一次取走后还剩,即=1﹣;前两次取走+后还剩,即+=1﹣;前三次取走++后还剩,即++=1﹣;…前n次取走后,还剩 _________ ,即 _________ = _________ 
利用上述计算:
(1)= _________ 
(2)= _________ 
(3)2﹣22﹣23﹣24﹣25﹣26﹣…﹣22011+22012(本题写出解题过程)

查看答案和解析>>

如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分) 
 分组
 0﹣19.5
 19.5﹣39.5
39.5﹣59.5
 59.5﹣79.5
 79.5﹣100
 合计
 频数
 1
 5
 6
 30
 b
 50
 频率
 0.02
 a
 0.12
 0.60
 0.16
 1
 
(1)频数、频率分布表中a=   ,b=   
(2)补全频数分布直方图.
(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?
(4)从该图中你还能获得哪些数学信息?(填写一条即可)

查看答案和解析>>

利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?

如图,一个边长为1的正方形,依次取正方形的,根据图示我们可以知道:第一次取走后还剩,即=1﹣;前两次取走+后还剩,即+=1﹣;前三次取走++后还剩,即++=1﹣;…前n次取走后,还剩 _________ ,即 _________ = _________ 

利用上述计算:

(1)= _________ 

(2)= _________ 

(3)2﹣22﹣23﹣24﹣25﹣26﹣…﹣22011+22012(本题写出解题过程)

 

查看答案和解析>>

某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:
频率分布表
器材种类频数频率
排 球20
乒乓球拍500.50
篮 球250.25
足 球
合 计1
(1)填充频率分布表中的空格.
(2)在图中,将表示“排球”和“足球”的部分补充完整.
(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?

查看答案和解析>>

亲爱的同学,你能比较20092010和20102009的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n是自然数)然后,我们分析n=1,n=2,n=3…这些简单情形入手,从中发现规律,经过归纳、猜想,得出结论.
(1)通过计算,比较下列各组中两个数的大小(在空格中选填<>﹦号)
12______21  23______32  34______43  45______54  56______65
(2)从第(1)小题的结果,经过归纳,可以猜想出当n≥4时,nn+1和(n+1)n的大小关系是______
(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:
20102011______20112010

查看答案和解析>>


同步练习册答案