(1)连结DB.则∠DBO=90° ∵AB切⊙O于点C∵.AB⊥OD.又OD是⊙O’直径.即OA=OB 得OA2=OC·OD=r·2R=2Rr.即OA·OB=2rR (2)无变化 连结00'.并延长交⊙O'于D点.连结DB.OC. 证明△OCA∽△OBD.得OA·OB=OC·OD=r·2R=2Rr (3)无变化 连结00’.并延长交⊙O’于B点.连结DB.OC 证出△OCA∽△OBD.得OA·OB=OC·OD.:r·2R=2Rr 查看更多

 

题目列表(包括答案和解析)

(7分)阅读材料,解答问题:
命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,ΔABC的外接圆半径为R,
2R.

证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A,因为CD是⊙O的直径,所以∠DBC=900,在Rt△DBC中,sinD=,所以sinA=,即,同理:,   ∴ 2R.
请阅读前面所给的命题和证明后,完成下面(1)(2)两题:
【小题1】(1)前面阅读材料中省略了“”的证明过程,请你把“”的证明过程补写出来.
【小题2】(2)直接运用阅读材料中命题的结论解题:已知锐角△ABC中, BC=,CA=,∠A=600,求△ABC的外接圆半径 R及∠C.

查看答案和解析>>

 (7分)阅读材料,解答问题:

命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,ΔABC的外接圆半径为R,

2R.

 

证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A,因为CD是⊙O的直径,所以∠DBC=900,在Rt△DBC中,sinD=,所以sinA=,即,同理:,    ∴ 2R.

 

请阅读前面所给的命题和证明后,完成下面(1)(2)两题:

1.(1)前面阅读材料中省略了“”的证明过程,请你把“”的证明过程补写出来.

2.(2)直接运用阅读材料中命题的结论解题:已知锐角△ABC中, BC=,CA=,∠A=600,求△ABC的外接圆半径 R及∠C.

 

查看答案和解析>>

 (7分)阅读材料,解答问题:

命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,ΔABC的外接圆半径为R,

2R.

 

证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A,因为CD是⊙O的直径,所以∠DBC=900,在Rt△DBC中,sinD=,所以sinA=,即,同理:,    ∴ 2R.

 

请阅读前面所给的命题和证明后,完成下面(1)(2)两题:

1.(1)前面阅读材料中省略了“”的证明过程,请你把“”的证明过程补写出来.

2.(2)直接运用阅读材料中命题的结论解题:已知锐角△ABC中, BC=,CA=,∠A=600,求△ABC的外接圆半径 R及∠C.

 

查看答案和解析>>

(7分)阅读材料,解答问题:
命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,ΔABC的外接圆半径为R,
2R.

证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A,因为CD是⊙O的直径,所以∠DBC=900,在Rt△DBC中,sinD=,所以sinA=,即,同理:,   ∴ 2R.
请阅读前面所给的命题和证明后,完成下面(1)(2)两题:
【小题1】(1)前面阅读材料中省略了“”的证明过程,请你把“”的证明过程补写出来.
【小题2】(2)直接运用阅读材料中命题的结论解题:已知锐角△ABC中, BC=,CA=,∠A=600,求△ABC的外接圆半径 R及∠C.

查看答案和解析>>


同步练习册答案