如图2.点A.B.C在⊙O上.若∠C=20°.则∠OAB=__度. 查看更多

 

题目列表(包括答案和解析)

如图1,点A、B、C在⊙O上,∠ABC=50°,则∠AOC的度数为
100°
100°
.如图2,在边长为3cm,4cm,5cm的三角形白铁皮上剪下一个最大的圆,此圆的半径为
1
1
cm.

查看答案和解析>>

已知将一幅三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)
(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是
60°
60°

(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是
75°
75°

(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

查看答案和解析>>

(2007•中山区二模)(1)如图1,点B、M、C在同一直线上,以BM、BC为一边,在直线BC的两侧作等边△ABC和等边△BMN,直线AM、CN交于点O,则∠AOC=
60
60
度(直接写出答案);
(2)如图2,把△BMN绕点B逆时针旋转任意角度,∠AOC的度数是否变化,验证你的结论;
(3)如图3,正方形ABCD和正方形BMNE有公共顶点B,把正方形BMNE绕点B旋转任意角度,AM、CN交于点O,求∠AOC的度数.

查看答案和解析>>

基本模型
如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,
(1)模型拓展
如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?
(2)模型应用
①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;
②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?
精英家教网

查看答案和解析>>

(2012•西城区二模)阅读下列材料
小华在学习中发现如下结论:
如图1,点A,A1,A2在直线l上,当直线l∥BC时,S△ABC=SA1BC=SA2BC
请你参考小华的学习经验画图(保留画图痕迹):
(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;
(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角形不全等);
(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.

查看答案和解析>>


同步练习册答案