证明:∵△ABD≌△ACD ∴∠ABD=∠ACD ∵BC是直径.∴∠BEC=90° ∵∠BND=∠ANE=90°-∠DAC=∠ACD ∴△ABD∽△ACD 查看更多

 

题目列表(包括答案和解析)

问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为
5
5

查看答案和解析>>

5、如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB
∠CBA=∠DBA
; 若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC
AD=AC

查看答案和解析>>

如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

24、如图,在Rt△ABC中,∠BAC=90°,AB=AC,BD是AC边上的中线,AE⊥BD于F,交BC于E.
(1)证明:∠ABD=∠DAF;
(2)试判断∠ADB与∠CDE的大小关系,并证明你的结论.

查看答案和解析>>

已知,如图,在△ABC中,AB=AC,AD=AE.求证:BD=CE.
下面是某同学的证明过程,请你阅读下面解答过程,并回答问题.
证明:∵AB=AC
∴∠B=∠C,在△ABD与△ACE中
AB=AC
∠B=∠C
AD=AE
∴△ABD≌△ACE
∴BD=CE
(1)找一找这种证明方法的问题在哪里?
(2)你能说明这种证明方法为什么有问题吗?(尝试画出反例)
(3)这种证明方法一定错误吗?有哪些情况可以正确,请画图并尝试证明.

查看答案和解析>>


同步练习册答案