点和圆的位置关系有三种:点在圆 .点在圆 .点在圆 , 例1:已知圆的半径r等于5厘米.点到圆心的距离为d. (1)当d=2厘米时.有d r.点在圆 (2)当d=7厘米时.有d r.点在圆 (3)当d=5厘米时.有d r.点在圆 查看更多

 

题目列表(包括答案和解析)

如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC精英家教网、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>


同步练习册答案