解: (1)如图1 (2)80-100 (3)840 查看更多

 

题目列表(包括答案和解析)

27、阅读下面的材料并解答问题.
图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系.例如完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2等图形的面积表示:

(1)请写出图3所表示的代数恒等式:
(a+2b)(2a+b)=2a2+5ab+2b2

解决问题:
某钢铁加工厂现有足够的2×2,3×3的正方形和2×3的矩形下脚料A、B、C(如图所示),现从中各选取若干个下脚料焊接成不同的图形,请你在下面给出的方格纸中,按下列要求分别画出一种示意图(说明:下面给出的方格纸中,每个小正方形的边长均为1,拼出的图形,要求每两个图片之间既无缝隙,也无重叠,画图必须保留拼较的痕迹)
A、B、C、
(2)选取A型4块,B型两种图片1块,C型图片4块,在下面的图2中拼成一个正方形;
利用面积法去解,如图所示.

(3)选取A型3块,B型两种图片1块,C型图片若干块,在下面的图3中拼成一个长方形.

查看答案和解析>>

关于x的不等式x-a≤-2的解集如图所示,则a的值是(  )

查看答案和解析>>

已知函数y=x2与y=-x+1图象交点的横坐标就是一元二次方程y=x2+x-1的解,如图,抛物线y=x2+1与双曲线y=
k
x
的交点A的横坐标是1,则关于x的不等式
k
x
+x2+1<0的解集是
-1<x<0
-1<x<0

查看答案和解析>>

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”.
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=90°,CD⊥AB,D为垂足.易证得两个结论:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D为垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长.
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大.求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
精英家教网

查看答案和解析>>

精英家教网已知关于x的不等式2x-m>-5的解集如图所示,则m的值为
 

查看答案和解析>>


同步练习册答案