2.平行四边形的判定 (1)定义法: . (2)边: 或 . (3)角: . (4)对角线: . [典例精析] 例1 如图.在 ABCD中.E.F为BC上两点.且BE=CF.AF=DE. 求证:△ABF≌△DCE, 例2 如图,小明用一根36m长的绳子围成了一个平行四边形的场地.其中一条边AB长为8m.其他三条边各长多少? 例3 如图.在□ABCD中.E.F分别是CD.AB上的点.且DE=BF. 求证:AE=CF 课堂练习 查看更多

 

题目列表(包括答案和解析)

26、定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.

(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.(

②任意凸四边形一定只有一个准内点.(

③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.(

查看答案和解析>>

定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.

(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.(______)
②任意凸四边形一定只有一个准内点.(______)
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.(______)

查看答案和解析>>

定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,,则点就是四边形的准内点.

 


(1)如图2, 的角平分线相交于点

求证:点是四边形的准内点.

(2)分别画出图3平行四边形和图4梯形的准内点.

(作图工具不限,不写作法,但要有必要的说明)

(3)判断下列命题的真假,在括号内填“真”或“假”.

   ①任意凸四边形一定存在准内点.(    )

②任意凸四边形一定只有一个准内点.(     )

③若是任意凸四边形的准内点,则

.(      )

查看答案和解析>>

定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.

精英家教网

(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.(______)
②任意凸四边形一定只有一个准内点.(______)
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.(______)

查看答案和解析>>

定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点。如图1,PH=PJ ,PI=PG ,则点P就是四边形ABCD的准内点。
 
(1)如图2,∠AFD与∠DEC的角平分线FP、EP 相交于点P
求证:点P是四边形ABCD 的准内点;
(2)分别画出图3平行四边形和图4梯形的准内点。(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”。
①任意凸四边形一定存在准内点。(     )
②任意凸四边形一定只有一个准内点。(     )
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD。(     )

查看答案和解析>>


同步练习册答案