解:通过观察凸四边形和五边形对角线的条数.可得到凸八边形的对角线条数应该是20条.思考过程:凸n边形每个顶点不能和它自己以及它的两个邻点作对角线.所以可做的对角线条数是(n-3), 凸n边形有n个顶点.所以可做n(n-3)条.由于对角线AB和BA是同一条.所以凸n边形共有条对角线.当n=8时.有条对角线. 查看更多

 

题目列表(包括答案和解析)

如图,Rt△ACB和Rt△BAD中,∠ACB=∠BDA=90°,∠ABC=∠BAD,边AD与BC相交于点E.
(1)在图1中,求证:AC=BD;
(2)当Rt△ACB沿BC方向平移到图2所示位置时,边A1C1与AB边交于点F.过点F作FG⊥AD于点G.此时请你通过观察、测量和猜想.写出FG+FC1与BD之间满足的数量关系,然后证明你的猜想;
(3)当Rt△ACB沿BC方向平移到图3所示的位置(点C1在线段BE上,且点C1与点B不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)

查看答案和解析>>

如图,Rt△ACB和Rt△BAD中,∠ACB=∠BDA=90°,∠ABC=∠BAD,边AD与BC相交于点E.
(1)在图1中,求证:AC=BD;
(2)当Rt△ACB沿BC方向平移到图2所示位置时,边A1C1与AB边交于点F.过点F作FG⊥AD于点G.此时请你通过观察、测量和猜想.写出FG+FC1与BD之间满足的数量关系,然后证明你的猜想;
(3)当Rt△ACB沿BC方向平移到图3所示的位置(点C1在线段BE上,且点C1与点B不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)

查看答案和解析>>

如图,Rt△ACB和Rt△BAD中,∠ACB=∠BDA=90°,∠ABC=∠BAD,边AD与BC相交于点E.
(1)在图1中,求证:AC=BD;
(2)当Rt△ACB沿BC方向平移到图2所示位置时,边A1C1与AB边交于点F.过点F作FG⊥AD于点G.此时请你通过观察、测量和猜想.写出FG+FC1与BD之间满足的数量关系,然后证明你的猜想;
(3)当Rt△ACB沿BC方向平移到图3所示的位置(点C1在线段BE上,且点C1与点B不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)

查看答案和解析>>

(2011•临川区模拟)问题背景:如图1,四边形ABCD和CEFG都是正方形,B,C,E在同一条直线上,连接BG,DE.
问题探究:
(1)①如图1所示,当G在CD边上时,猜想线段BG、DE的数量关系及所在直线的位置关系.(不要求证明)
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,请选择图2或图3证明你的判断.
类比研究:
(2)若将原题中的“正方形”改为“矩形”(如图4所示),且
AB
BC
=
CE
CG
=k(其中k>0),请直接写出线段BG、DE的数量关系及位置关系.请选择图5或图6证明你的判断.
拓展应用:
(3)在(1)中图2中,连接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

(2012•许昌一模)已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H
(1)如图1,猜想AH与AB有什么数量关系?并证明;
(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;
小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?

查看答案和解析>>


同步练习册答案