3.如图2.已知中...是高和的交点.则线段的长度为( ) A. B.4 C. D.5 查看更多

 

题目列表(包括答案和解析)

如图1,已知△ABC与△DCE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠DCE=90°,点D在AC上,直线BD交AE于点F.
(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;
证明:在△ACE与△BCD中
∵(
AC=BC,∠DCB=∠ECA,DC=EC
AC=BC,∠DCB=∠ECA,DC=EC

∴△ACE≌△BCD(SAS)
∴BD=AE,∠CAE=∠CBD(全等三角形的对应角相等)
∵∠ACE=90°
∴∠CAE+∠AEC=90°(
直角三角形的两锐角互余
直角三角形的两锐角互余

∴∠CBD+∠AEC=90°(等量代换)
∠BFE=90°
∠BFE=90°

∴BF⊥AE(垂直的定义)
(2)将△DCE绕着点C旋转,在旋转过程中保持△DCE的大小与形状均不变,那么,当△DCE旋转至图2的位置时,(1)中的结论是否仍然成立?为什么?

查看答案和解析>>

阅读与理解:
三角形的中线的性质:三角形的中线等分三角形的面积,
即如图1,AD是△ABC中BC边上的中线,
S△ABD=S△ACD=
1
2
S△ABC

理由:∵BD=CD,∴S△ABD=
1
2
BD×AH=
1
2
CD×AH=S△ACD
=
1
2
S△ABC

即:等底同高的三角形面积相等.
操作与探索
在如图2至图4中,△ABC的面积为a.
(1)如图2,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=
 
(用含a的代数式表示);
(2)如图3,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=
 
(用含a的代数式表示),并写出理由;
(3)在图3的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图4).若阴影部分的面积为S3,则S3=
 
(用含a的代数式表示).
精英家教网
拓展与应用
如图5,已知四边形ABCD的面积是a,E、F、G、H分别是AB、BC、CD的中点,求图中阴影部分的面积?精英家教网

查看答案和解析>>

(2013•本溪二模)2013年4月20日,四川雅安发生了7.0级地震,我市某中学展开了爱心捐款活动,团干部小华对九年一班的捐款情况进行了统计,并把统计的结果只做了一个不完整的频数分布直方图和扇形统计图(如图),已知学生捐款最少的是5元,最多的不是25元.

(1)九年一班共有多少名学生?
(2)请补全频数分布直方图.
(3)九年一班学生捐款的中位数所在的组别范围是多少?

查看答案和解析>>

(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.
①如图1,求证:△ABE≌△ADC;
②探究:如图1,∠BOC=
 

如图2,∠BOC=
 

如图3,∠BOC=
 

(2)如图4,已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O.
①猜想:如图4,∠BOC=360÷n(用含n的式子表示);
②根据图4证明你的猜想.
精英家教网

查看答案和解析>>

2010年4月14日,青海玉树发生了7.1级地震.我市某中学展开了“情系玉树,大爱无疆”爱心捐款活动.团干部小华对九(1)班的捐款情况进行了统计,并把统计的结果制作了一个不安全的频数分布直方图和扇形统计图(如图).已知学生捐款最少的是5元,最多的不足25元.
(1)请补全频数分布直方图;
(2)九(1)班学生捐款的中位数所在的组别范围是
 

(3)九(1)班学生小明同学捐款24元,班主任拟在捐款最多的20-25元这组同学中随机选取一人代表班级在学校组织的献爱心活动大会上发言,小明同学被选中的概率是
 

精英家教网精英家教网

查看答案和解析>>


同步练习册答案