解:(1)1000米=100000cm.100000÷50000=2(cm) ∴物流中心到公路交叉处A点的图上距离2cm ------2分 (2)作∠BAC的角平分线.且AP=2cm ------6分 查看更多

 

题目列表(包括答案和解析)

矩形仓库的多种设计方案

  实践与探索课上,老师布置了这样一道题:

  有100米长的篱笆材料,想围成一矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长50米的旧墙.有人用这个篱笆围一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求.现在请你设计矩形仓库的长和宽,使它符合要求.

  经过同学们一天的实践与思考,老师收到了如下几种设计方案:

  (1)如果设矩形的宽为x米,则用于长的篱笆为=(50-x)米,这时面积S=x(50-x)

  当S=600时,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  检验后知x=20符合要求.

  (2)根据在周长相等的条件下,正方形面积大于矩形面积,所以设计成正方形仓库,它的边长为x米,则4x=100,x=25.这时面积达到625米,当然符合要求.

  (3)如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为100-2x,如图.

  因为旧墙长50米,所以100-2x≤50.即x≥25米.若S=600平方米,则由x(100-2x)=600,即x2-50x+300=0,解得x1=25+5,x2=25-5.根据x≥25,舍去x2=25-5

  所以,利用旧墙,取矩形垂直于旧墙一边长为25+5米(约43米),另一边长约14米,符合要求.

  (4)如果充分利用北面旧墙,即矩形一边是50米旧墙时,用100米篱笆围成矩形仓库,则矩形另一边长为25米,这时矩形面积为S=50×25=1250(平方米).即面积可达1250平方米,符合设计要求.

还可以有其他一些符合要求的设计方案.请你试试看.

查看答案和解析>>

阅读下列材料,并解决后面的问题:

(1)等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线.例如,如图,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线.

(2)利用等高线地形图求坡度的步骤如下:步骤一:根据两点A、B所在的等高线地形图,分别读出点A、B的高度;A、B两点的铅直距离=点A、B的高度差;步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为1∶n,则A、B两点的水平距离=dn;步骤三:AB的坡度=

某中学学生小明和小丁生活在山城,如图,小明每天上学从家A经过B沿着公路AB、BP到学校P,小丁每天上学从家C沿着公路CP到学校P.该山城等高线地形图的比例尺为1∶50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米.

(1)分别求出AB、BP、CP的坡度(同一段路中间坡度的微小变化忽略不计);

(2)若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在之间时,小明和小丁步行的平均速度均约为1米/秒)

解:(1)AB的水平距离=1.8´ 50000=90000(厘米)=900(米),AB的坡度=;BP的水平距离=3.6´ 50000=180000(厘米)=1800(米),BP的坡度=;CP的水平距离=4.2´ 50000=210000(厘米)=2100(米),CP的坡度=_________;

(2)因为,所以小明在路段AB、BP上步行的平均速度均约为1.3米/秒.因为________,所以小丁在路段CP上步行的平均速度约为________米/秒,斜坡_______AB的距离=» 906(米),斜坡BP的距离=≈1811(米),斜_________坡CP的距离=≈2121(米),所以小明从家到学校的时间=________=2090(秒).小丁从家到学校的时间约为________秒.因此,________先到学校.

查看答案和解析>>

矩形仓库的多种设计方案

  实践与探索课上,老师布置了这样一道题:

  有100米长的篱笆材料,想围成一矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长50米的旧墙.有人用这个篱笆围一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求.现在请你设计矩形仓库的长和宽,使它符合要求.

  经过同学们一天的实践与思考,老师收到了如下几种设计方案:

  (1)如果设矩形的宽为x米,则用于长的篱笆为=(50-x)米,这时面积S=x(50-x).

  当S=600时,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  检验后知x=20符合要求.

  (2)根据在周长相等的条件下,正方形面积大于矩形面积,所以设计成正方形仓库,它的边长为x米,则4x=100,x=25.这时面积达到625米,当然符合要求.

  (3)如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为100-2x,如图.

  因为旧墙长50米,所以100-2x≤50.即x≥25米.若S=600平方米,则由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根据x≥25,舍去x2=25-

  所以,利用旧墙,取矩形垂直于旧墙一边长为25+米(约43米),另一边长约14米,符合要求.

  (4)如果充分利用北面旧墙,即矩形一边是50米旧墙时,用100米篱笆围成矩形仓库,则矩形另一边长为25米,这时矩形面积为S=50×25=1250(平方米).即面积可达1250平方米,符合设计要求.

还可以有其他一些符合要求的设计方案.请你试试看.

查看答案和解析>>

某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃,现在地面气温是37℃,请问10000米高空的气温大约是多少?
本题备用:一天,小红和小丽用温差测量山峰的高度,小红在山顶测得温度是-1℃,小丽此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,请问这座山峰的高度大约是多少米?

查看答案和解析>>

学校要从甲、乙、丙三名中长跑运动员中选出一名奥运火炬传递手,先对三人一学期的1000米测试成绩作了统计分析如表一;又对三人进行了奥运知识和综合素质测试,测试成绩(百分制)如表二;之后在100人中对三人进行了民主推选,要求每人只推选1人,不准弃权,最后统计三人的得票率如图,一票计2分.
(1)请计算甲、乙、丙三人各自关于奥运知识,综合素质,民主推选三项考查得分的平均成绩,并参考1000米测试成绩的稳定性确定谁最合适.
(2)如果对奥运知识、综合素质、民主推选分别赋予3,4,3的权,请计算每人三项考查的平均成绩,并参考1000米测试的平均成绩确定谁最合适.精英家教网
表一
候选人 1000米测试成绩(秒) 平均数
185 188 189 190 188
190 186 187 189 188
187 188 187 190 188
表二
测试项目 测试成绩
体育知识 85 60 70
综合素质 75 80 60

查看答案和解析>>


同步练习册答案