切线性质: 例4:(1)如图.PA是⊙O的切线.点A是切点.则∠PAO= 度 (2)如图.PA.PB是⊙O的切线.点A.B是切点. 则 = .∠ =∠ , 查看更多

 

题目列表(包括答案和解析)

【考点】切线的性质;圆周角定理.

【专题】计算题.

【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APOB中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.

【解答】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),

连接BD,AD,如图所示:

∵PA、PB是⊙O的切线,

∴OA⊥AP,OB⊥BP,

∴∠OAP=∠OBP=90°,又∠P=40°,

∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,

∵圆周角∠ADB与圆心角∠AOB都对弧AB,

∴∠ADB=∠AOB=70°,

又∵四边形ACBD为圆内接四边形,

∴∠ADB+∠ACB=180°,

则∠ACB=110°.

故选B。

【点评】此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键

查看答案和解析>>

如图所示.P⊙O外一点.PA⊙O的切线.A是切点.B⊙O上一点.且PA=PB,连接AOBOAB,并延长BO与切线PA相交于点Q

(1)求证:PB⊙O的切线;

(2)求证: AQ·PQ= OQ·BQ; 

(3)设∠AOQ=.若cos=OQ= 15.求AB的长

【解析】此题考核圆的切线,相似三角形的判定和性质

 

查看答案和解析>>

如图所示.P⊙O外一点.PA⊙O的切线.A是切点.B⊙O上一点.且PA=PB,连接AOBOAB,并延长BO与切线PA相交于点Q

(1)求证:PB⊙O的切线;

(2)求证: AQ·PQ= OQ·BQ; 

(3)设∠AOQ=.若cos=OQ= 15.求AB的长

【解析】此题考核圆的切线,相似三角形的判定和性质

 

查看答案和解析>>


同步练习册答案