如图四边形ABCD是矩形..点E在BC上.且AE=AD.DF⊥AE.垂足为F.请探求DF与AB有何数量关系?写出你所得到的结论.并给予证明. 查看更多

 

题目列表(包括答案和解析)

如图,正比例函数y=2x与反比例函数y=
kx
(k>0)
的图象相交于A、C两点,过精英家教网点A作AD垂直x轴,垂足为D,过点C作CB垂直x轴,垂足为B,连接AB和CD.已知点A的横坐标为2.
(1)求k的值;
(2)求证:四边形ABCD是平行四边形;
(3)P、Q两点是坐标轴上的动点(P为正半轴上的点,Q为负半轴上的点),当以A、C、P、Q四点为顶点的四边形是矩形时,求P、Q两点的坐标.

查看答案和解析>>

如图所示,矩形ABCD,AB>AD,E在AD上,将△ABE沿BE折叠后,A点正好落在CD上的点F.
(1)用尺规作出E、F;
(2)若AE=5,DE=3,求折痕BE的长;
(3)试判断四边形ABFE是否一定有内切圆.

查看答案和解析>>

如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)直接写出该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以每秒1个单位长度的速度从A点出发沿射线AB匀速移动,设它们运动的时间为t秒(t>0),直线AB与该抛物线的交点为N(如图2所示).
①填空:当0<t≤3时,PN=
-t2+3t
-t2+3t
.(用含t的代数式表示);
②在运动的过程中,以P、N、C、D为顶点的四边形能否成为平行四边形?若能,请求出此时t的值,若不能,请说明理由.
③设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最小值?为什么?

查看答案和解析>>

如图,在矩形ABCD中,点E在AD边上,AE>DE,BE=BC,点O是线段CE的中点.
(1)试说明CE平分∠BED;
(2)若AB=3,BC=5,求BO的长;
(3)延长BO交直线AD于点F,连接CF,画出图形,试说明四边形BCFE是菱形.

查看答案和解析>>

如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)直接写出该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以每秒1个单位长度的速度从A点出发沿射线AB匀速移动,设它们运动的时间为t秒(t>0),直线AB与该抛物线的交点为N(如图2所示).
①填空:当0<t≤3时,PN=______.(用含t的代数式表示);
②在运动的过程中,以P、N、C、D为顶点的四边形能否成为平行四边形?若能,请求出此时t的值,若不能,请说明理由.
③设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最小值?为什么?

查看答案和解析>>


同步练习册答案