题目列表(包括答案和解析)
如图,已知:如图(1),AB是⊙O的直径,P是AB上的一点(与A、B不重合).QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形.对上述命题证明如下:
证明:连结OC.
∵OA=OC,∴∠A=∠1.
∵CD切⊙O于C点,
∴∠OCD=90°,
∴∠1+∠2=90°,
∴∠A+∠2=90°.
在Rt△QPA中,∠QPA=90°,
∴∠A+∠Q=90°,
∴∠2=∠Q.∴DQ=DC.
即△CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图(2)所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.
)如图,已知C、D是双曲线
在第一象限分支上的两点,直线CD分别交x轴、y轴于A、B两点。设C(x1,y1)、D(x2,y2),连结OC、OD(O是坐标有点),若∠BOC=∠AOD=α,且tanα=
,OC=
。
(1
)求C、D的坐标和m的值;(2
)双曲线上是否存在一点P,使得ΔPOC和ΔPOD的面积相等?若存在,给出证明,若不存在,说明理由。
![]()
A、
| ||
B、
| ||
C、
| ||
D、
|
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com