25.如图12.已知二次函数图象的顶点坐标为C(1,0).直线与该二次函数的图象交于A.B两点.其中A点的坐标为(3,4).B点在轴上. (1)求的值及这个二次函数的关系式, (2)P为线段AB上的一个动点.过P作轴的垂线与这个二次函数的图象交于点E点.设线段PE的长为.点P的横坐标为.求与之间的函数关系式.并写出自变量的取值范围, (3)D为直线AB与这个二次函数图象对称轴的交点.在线段AB上是否存在一点P.使得四边形DCEP是平行四形?若存在.请求出此时P点的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题12分)已知二次函数的图象如图所示.

1.(1)求二次函数的解析式及抛物线顶点M的坐标;

2.(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;

3.(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;

4.(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).

 

查看答案和解析>>

(本题12分)已知二次函数的图象如图所示.

【小题1】(1)求二次函数的解析式及抛物线顶点M的坐标;
【小题2】(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;
【小题3】(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;
【小题4】(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).

查看答案和解析>>

(本题12分)已知二次函数的图象如图所示.

【小题1】(1)求二次函数的解析式及抛物线顶点M的坐标;
【小题2】(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;
【小题3】(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;
【小题4】(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).

查看答案和解析>>

(本题12分)已知二次函数的图象如图所示.

1.(1)求二次函数的解析式及抛物线顶点M的坐标;

2.(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t的取值范围;

3.(3)在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;

4.(4)将△OAC补成矩形,使上△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).

 

查看答案和解析>>

如图,已知二次函数图象的顶点为原点,直线y=
12
x+4的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B.
(1)求B点的坐标与这个二次函数的解析式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P点作x轴的垂线与这个二次函数的图象交于D点,与x轴交于点E.设该线段PD的长为h,点P的横坐标为t,求h与t之间的函数解析式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形与△B精英家教网OC相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案