解:(1)由题意可知..解.得 m=3.-------2分 ∴ A(3.4).B(6.2), ∴ k=4×3=12. -------------3分 (2)存在两种情况.如图: 解法一: ①当M点在x轴的正半轴上.N点在y轴的正半 轴上时.设M1点坐标为(x1.0).N1点坐标为(0.y1). ∵ 四边形AN1M1B为平行四边形. ∴ 线段N1M1可看作由线段AB向左平移3个单位.再向 下平移2个单位得到的(也可看作向下平移2个单位.再向左平移3个单位得到的). 由(1)知A点坐标为(3.4).B点坐标为(6.2). ∴ N1点坐标为.即N1(0.2), M1点坐标为.即M1(3.0). --------------..-4分 设直线M1N1的函数表达式为. 把x=3.y=0代入.解得. ∴ 直线M1N1的函数表达式为. -..--------------5分 ②当M点在x轴的负半轴上.N点在y轴的负半轴上时.设M2点坐标为(x2.0).N2点坐标为(0.y2). ∵ AB∥N1M1.AB∥M2N2.AB=N1M1.AB=M2N2. ∴ N1M1∥M2N2.N1M1=M2N2. ∴四边形N1 M2 N2M1为平行四边形. ∴ 点M1 .M2与线段N1. N2关于原点O成中心对称. ∴ M2点坐标为.N2点坐标为.--------------6分 设直线M2N2的函数表达式为. 把x=-3.y=0代入.解得.∴ 直线M2N2的函数表达式为. 所以.直线MN的函数表达式为或. ---------7分 解法二 :(2)存在两种情况.如图: ①当M点在x轴的正半轴上(M1).N点在y轴的 正半轴上(N1)时.由(1)知A点坐标为(3.4).B点坐标为(6.2) 得直线AB: , -----------------------4分 ∵ 四边形AN1M1B为平行四边形.∴ 线段N1M1可看作由直线AB向左平移3个单位得.再向下平移2个单位得到2. 化简得(也可看作向下平移2个单位得2.再向左平移3个单位得到2化简得)--------------..5分 ② 同解法一. 查看更多

 

题目列表(包括答案和解析)

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.

材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).

材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).

编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.

材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).

材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).

编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

课本拓展
旧知新意:
我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
1.尝试探究:
(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?

2.初步应用:
(2) 如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,
则∠2-∠C=_______________;

(3) 小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案_                  _.

3.拓展提升:
(4) 如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由.)

查看答案和解析>>

钟面数字问题
如图,钟面上有1,2,3,…,11,12这12个数字.
(1)试在某些数的前面添加负号,使它们的代数和为零
(2)能否改变钟面上的数,比如只剩下6个偶数,仍按第(1)小题的要求来做?
[思路探究]
(1)我们先试着选定任意几个数字,在其前面添加负号,如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
这当然不是我们要的答案,但我们可以将其调整,比如改变1前面的符号,得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用这种方法当然可以得到许多答案,但我们并不满足.我们希望寻找其中的规律,使我们能找到更多的解答.我们发现:
在调整符号的过程中,若将一个正数变号,12个数的代数和就减少这个正数的两倍;若将一个负数变号,12个数的代数和就增加这个负数的绝对值的两倍.
要使12个数的代数和为零,其中正数的和的绝对值必须与负数的和的绝对值相等,均为12个数之和的-半,即等于39.
由此,我们只要找到几个和为39的数,将这些数添上负号即可.
由于最大3个数之和为33<39,因此必须再添上一个6才有解答,所以添加负号的数至少要有4个.同理可知,添加负号的数最多不超过8个.
根据以上规律,就能在很短的时间内得到许多解答,但是要写出所有解答,还必须把答案作适当的分类.本题共有124个解答,亲爱的读者,你能写出这124个解答来吗?
(2)因为2+4+6+8+10+12-42,它的一半为21,而奇数不可能通过偶数求和得到,所以只剩下6个偶数时,不能按第(1)小题的要求来做.

查看答案和解析>>


同步练习册答案