题目列表(包括答案和解析)
(本小题满分12分)
如图,在平面直角坐标系中,顶点为(,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧), 已知
点坐标为(
,
)。
(1)求此抛物线的解析式;
(2)过点作线段
的垂线交抛物线于点
, 如果以点
为圆心的圆与直线
相切,请判断抛物线的对称轴
与⊙
有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
,
两点之间,问:当点
运动到什么位置时,
的面积最大?并求出此时
点的坐标和
的最大面积.
(本小题满分12分)已知:直线与
轴交于A,与
轴交于D,抛物线
与直线交于A、E两点,与
轴交于B、C两点,且B点坐标为 (1,0).
(1)求抛物线的解析式;
(2)动点P在
轴上移动,当△PAE是直角三角形时,求点P的坐标.
(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标.
![]()
(本小题满分12分)已知:直线
与
轴交于A,与
轴交于D,抛物线
与直线交于A、E两点,与
轴交于B、C两点,且B点坐标为 (1,0).![]()
(1)求抛物线的解析式;
(2)动点P在
轴上移动,当△PAE是直角三角形时,求点P的坐标.
(3)在抛物线的对称轴上找一点M,使
的值最大,求出点M的坐标.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com