26.如图.在直角坐标系中.已知点A.四边形ABCD是面积为9的等腰梯形.AD//BC.AB=CD.解答下列问题. (1)直接写出C.D两点坐标, (2)将梯形ABCD绕A点旋转得到梯形. 点B.C.D的对应点分别为. 求经过B..三点的抛物线的解析式, 中抛物线上的点.且在抛物线对称轴的右侧PEY轴于点F. 设点P的横坐标为A,四边形OEPF的周长为L. 求L与A之间的函数关系式,并注明自变量A的取值范围. 中抛物线上一点,且为等腰三角形,则这样的点Q有 个. 2009年朝阳区初中毕业生学业考试模拟(一) 数学试题答案及评分标准 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的精英家教网顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.

查看答案和解析>>

如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.

查看答案和解析>>

如图,在直角坐标系中,矩形ABCD的四个顶点在正三角形OEF的边上.已知正三角形OEF的边长为2,记AB的长为x.
(1)求F点的坐标及过O、E、F三点的抛物线的解析式.
(2)记点C关于直线OF的对称点为G,问x取什么值时,点G恰好落在y轴上.
(3)在条件(2)下,点P是过O、E、F三点的抛物线上的一个动点P,问是否存在点P,使点P、A、F、G四点构成梯形?如存在,求出点P的坐标;如不存在,请说明理由.

查看答案和解析>>

如图,在直角坐标系中,矩形ABCD的四个顶点在正三角形OEF的边上.已知正三角形OEF的边长为2,记AB的长为x.
(1)求F点的坐标及过O、E、F三点的抛物线的解析式.
(2)记点C关于直线OF的对称点为G,问x取什么值时,点G恰好落在y轴上.
(3)在条件(2)下,点P是过O、E、F三点的抛物线上的一个动点P,问是否存在点P,使点P、A、F、G四点构成梯形?如存在,求出点P的坐标;如不存在,请说明理由.

查看答案和解析>>

如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.

查看答案和解析>>


同步练习册答案