21.如图.P为轴正半轴上一点.过点P作轴的垂线.交函数的图象于点A.交函数的图象于点B.过点B作轴的平行线.交于点C.连结AC. (1)当点P的坐标为(2.0)时.求△ABC的面积. (2)当点P的坐标为(.0)时.△ABC的面积是否随值的变化而变化? 查看更多

 

题目列表(包括答案和解析)

(本题10分)在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC, 相邻两边OAOC分别落在轴和轴的正半轴上, 设抛物

<0)过矩形顶点BC.

(1)当n=1时,如果=-1,试求b的值;

(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN使EF在线段CB上,如果MN两点也在抛物线上,求出此时抛物线的解析式;

(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;

②直接写出关于的关系式.

 

查看答案和解析>>

(本题10分)在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC,相邻两边OAOC分别落在轴和轴的正半轴上, 设抛物
<0)过矩形顶点BC.
(1)当n=1时,如果=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN使EF在线段CB上,如果MN两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;
②直接写出关于的关系式.

查看答案和解析>>

(本题10分)在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC,相邻两边OAOC分别落在轴和轴的正半轴上, 设抛物
<0)过矩形顶点BC.
(1)当n=1时,如果=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN使EF在线段CB上,如果MN两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;
②直接写出关于的关系式.

查看答案和解析>>

(本题10分)在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC, 相邻两边OAOC分别落在轴和轴的正半轴上, 设抛物

<0)过矩形顶点BC.

(1)当n=1时,如果=-1,试求b的值;

(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN使EF在线段CB上,如果MN两点也在抛物线上,求出此时抛物线的解析式;

(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;

②直接写出关于的关系式.

 

查看答案和解析>>

(本题12分)如图①,平面直角坐标系中,已知C(0,10),点P、Q同时从点出发,在线段OC上做往返匀速运动,设运动时间为t(s),点P、Q离开点O的距离为S图②中线段OA、OB(A、B都在格点上)分别表示当0≤t≤6时P、Q两点离开点O的距离S与运动时间t (s)的函数图像.

1.⑴请在图②中分别画出当6≤t≤10时P、Q两点离开点O的距离S与运动时间t(s)的函数图像.

2.⑵求出P、Q两点第一次相遇的时刻.

3.⑶如图①,在运动过程中,以OP为一边画正方形OPMD,点D在x轴正半轴上,作QE∥PD交x轴于E,设△PMD与△OQE重合部分的面积 为y,试求出当0≤t≤10时y与t(s)的函数关系式(写出相应的t的范围) .

 

查看答案和解析>>


同步练习册答案