25.如图1.图2.已知菱形ABCD.∠B=60°.M.N分别是BC.CD上一点.连结AM.AN. (1)如图1.当M.N分别是BC. CD 中点时.求证:AM=AN (2)如图2.当BM=CN时.求∠MAN的度数. (3)如图3.若将条件改为:已知菱形ABCD.∠B=α°.M是线段BC上一点.N是直线CD上一点.设∠BAM=x°, ∠DAN=y°.探究并说明当x. y满足怎样的数量关系时.线段AM=AN 查看更多

 

题目列表(包括答案和解析)

已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断
1
DM
+
1
DN
是否为定值?若是,请求出该定值;若不是,请说明理由.
精英家教网

查看答案和解析>>

26、已知菱形ABCD中,∠BAD=120°,过点A分别作AE⊥BC于E,AF⊥CD于F,且∠EAF=60°,易证:BE+DF=AB;
当∠EAF绕着点A逆时针方向旋转到∠EAF的两边与菱形的两边BC、CD(或两边BC、CD的延长线)相交,但不垂直时(如图2、图3),上述结论是否还成立.如果成立,请给予证明;如果不成立,请直接写出线段BE、DF、AB三者之间的数量关系,不用证明.

查看答案和解析>>

已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P. ①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出
1
DM
+
1
DN
的值.

查看答案和解析>>

已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断数学公式是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

已知菱形ABCD中,∠BAD=120°,过点A分别作AE⊥BC于E,AF⊥CD于F,且∠EAF=60°,易证:BE+DF=AB;
当∠EAF绕着点A逆时针方向旋转到∠EAF的两边与菱形的两边BC、CD(或两边BC、CD的延长线)相交,但不垂直时(如图2、图3),上述结论是否还成立.如果成立,请给予证明;如果不成立,请直接写出线段BE、DF、AB三者之间的数量关系,不用证明.

查看答案和解析>>


同步练习册答案