如图..有一个圆O和两个正六边形..的6个顶点都在圆周上.的6条边都和圆O相切(我们称.分别为圆O的内接正六边形和外切正六边形). (1)设.的边长分别为..圆O的半径为.求及的值, (2)求正六边形.的面积比的值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为()。

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)

如图,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为()。

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.

 

 

 

 

 

 

 

 

查看答案和解析>>

如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;
(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)
依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)

查看答案和解析>>

(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=
3
2
,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求
a
s
的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)
依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)

查看答案和解析>>

(本小题满分6分)  

 

(第18题)

 如图, 在平面直角坐标系中, 点A(0,8), 点B(6 , 8 ).

(1) 只用直尺(没有刻度)和圆规, 求作一个点P,使点P同时满足下

列两个条件(要求保留作图痕迹, 不必写出作法):

1)点P到A,B两点的距离相等;

2)点P的两边的距离相等.

(2) 在(1)作出点P后, 写出点P的坐标.

 

查看答案和解析>>


同步练习册答案