如图12所示.四边形ABCD是以O为圆心.AB为直径的半圆的内接四边形.对角线AC.BD相交于点E. (1)求证:△DEC-△AEB, (2)当∠AED=60°时.求△DEC与△AEB的面积比. 查看更多

 

题目列表(包括答案和解析)

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的
53
,若存在,写出点K的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

精英家教网如图,所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.

查看答案和解析>>

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的,若存在,写出点K的坐标;若不存在,请说明理由.

查看答案和解析>>

综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的,若存在,写出点K的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.

查看答案和解析>>


同步练习册答案