待定系数法确定正比例函数.一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式.已知两点便可确定一次函数解析式. 查看更多

 

题目列表(包括答案和解析)

精英家教网九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:
 
,∴m=
 
;已知点B(-2,n)在直线y=2x-1上,求n的方法是:
 
,∴n=
 

问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先
 
,再由已知条件可得
 
.解得:
 
.∴满足已知条件的一次函数的解析式为:
 
.这个一次函数的图象与两坐标轴的交点坐标为:
 
,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,
 
的方法,叫做待定系数法.

查看答案和解析>>

已知正比例函数y=kx与反比例函数y=
ax
相交于点A(1,b)、点B(c,-2),求k+a的值.甲同学说:未知数太多,很难求的;乙同学说:可能不是用待定系数法来求;丙说:如果用数形结合的方法,利用两交点在坐标系中位置的特殊性,可以试试.请结合他们的讨论求出k+a=
-4或4
-4或4

查看答案和解析>>

(1999•河北)九年义务教育三年制初级中学教科书代数第三册中,有以下几段文字:“对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)和它对应;对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.”“一般地,对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.”“实际上,所有一次函数的图象都是一条直线.”“因为两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线,就可以了.”由此可知:满足函数关系式的有序实数对所对应的点,一定在这个函数的图象上;反之,函数图象上的点的坐标,一定满足这个函数的关系式.另外,已知直线上两点的坐标,便可求出这条直线所对应的一次函数的解析式.
问题1:已知点A(m,1)在直线y=2x-1上,求m的方法是:    ,∴m=    ;已知点B(-2,n)在直线y=2x-1上,求n的方法是:    ,∴n=   
问题2:已知某个一次函数的图象经过点P(3,5)和Q(-4,-9),求这个一次函数的解析式时,一般先    ,再由已知条件可得    .解得:    .∴满足已知条件的一次函数的解析式为:    .这个一次函数的图象与两坐标轴的交点坐标为:    ,在右侧给定的平面直角坐标系中,描出这两个点,并画出这个函数的图象.像解决问题2这样,    的方法,叫做待定系数法.

查看答案和解析>>

已知正比例函数y=kx与反比例函数y=相交于点A(1,b)、点B(c,﹣2),求k+a的值.甲同学说:未知数太多,很难求的;乙同学说:可能不是用待定系数法来求;丙说:如果用数形结合的方法,利用两交点在坐标系中位置的特殊性,可以试试.请结合他们的讨论求出k+a=  

 

查看答案和解析>>

在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站(秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.

21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站

(1)s与t之间的函数关系式是:          

(2)与图③相对应的P点的运动路径是:       ;P点出发     秒首次到达点B;

(3)写出当3≤s≤8时,y与s之间的函数关系式,并在图③中补全函数图象.

解题思路:(1)由图②知,s与t是正比例函数关系,用“待定系数法”可求的关系式;(2)结合题意和图③的函数图象,P点的运动路径是:M→D→A→N;从(1)中知点P的运动速度,可以求出点P运动到点B需要的时间;(3)对3≤s≤8的范围,又需要分三个时间段分别求解.

查看答案和解析>>


同步练习册答案