如图甲.在△ABC中.∠ACB为锐角.点D为射线BC上一动点.连接AD.以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题: (1)如果AB=AC.∠BAC=90º. ①当点D在线段BC上时.如图乙.线段CF.BD之间的位置关系为 .数量关系为 . ②当点D在线段BC的延长线上时.如图丙.①中的结论是否仍然成立.为什么? (2)如果AB≠AC.∠BAC≠90º.点D在线段BC上运动. 试探究:当△ABC满足一个什么条件时.CF⊥BC?画出相应图形.并说明理由. (3)若AC=.BC=3.在(2)的条件下.设正方形ADEF的边DE与线段CF相交于点P.求线段CP长的最大值. 查看更多

 

题目列表(包括答案和解析)

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为
 
,数量关系为
 

②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=4
2
,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
精英家教网

查看答案和解析>>

如图甲,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40°.
(1)求∠NMB的大小.
(2)如图乙,如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的大小.
(3)根据(1)(2)的计算,你能发现其中的蕴涵的规律吗?请写出你的猜想并证明.
(4)如图丙,将(1)中的∠A改为钝角,其余条件不变,对这个问题规律的认识是否需要加以修改?请你把∠A代入一个钝角度数验证你的结论.

查看答案和解析>>

21、如图甲,在△ABC中,E是AC边上的一点,
(1)在图甲中,作出以BE为对角线的平行四边形BDEF,使D、F分别在BC和AB边上;
(2)改变点E的位置,则图甲中所作的平行四边形BDEF有没有可能为菱形?若有,请在图乙中作出点E的位置(用尺规作图,并保留作图痕迹);若没有,请说明理由.

查看答案和解析>>

已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.
(1)试说明:∠EFD=
12
(∠C-∠B);
(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.

查看答案和解析>>

27、如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为
垂直
,数量关系为
相等

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.

查看答案和解析>>


同步练习册答案