[解析]解决运动型的问题.关键是将其运用过程在头脑当中预演一遍.找准其运用时各个量的变化规律.再动中取静.得到相关量之间的关系. [答案]解:(1)是等边三角形. 当时.. . . 又. 是等边三角形. (2)过作.垂足为. 由.得. 由.得. . (3). . 又.是等边三角形. . . . . 四边形是平行四边形. . 又.. .. .即. 解得. 当时. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,点O为坐标原点.
(1)若点P的坐标为(1,2),将线段OP绕原点O逆时针旋转90°得到线段OQ,则点Q的坐标为
 

(2)若过点P的直线L1的函数解析式为y=2x,求过点P且与直线L1垂直的直线L2的函数解析式;
(3)若直线L1的函数解析式为y=x+4,直线L2的函数解析式为y=-x-2,求证:直线L1与直线L2互相垂直;
(4)设直线L1的函数关系式为y=k1x+b1,直线L2的函数关系式为y=k2x+b2(k1•k2≠0).根据以上的解题结论,请你用一句话来总结概括:直线L1和直线L2互相垂直与k1、k2的关系.
(5)请运用(4)中的结论来解决下面的问题:
在平面直角坐标系中,点A的坐标为(-3,-6),点B的坐标为(7,2),求线段AB的垂直平分线的函数解析式.

查看答案和解析>>

如图表示一骑自行车和一骑摩托车沿相同路由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图象回答或解决下面的问题:
(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取植范围);
(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要化简,也不精英家教网要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.

查看答案和解析>>

26、如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图象回答或解决下面的问题:
(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多少时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式
(不要求写出自变量的取值范围);

查看答案和解析>>

如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图象回答或解决下面的问题:
(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多少时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围).

查看答案和解析>>

(2002•河北)如图表示一骑自行车和一骑摩托车沿相同路由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图象回答或解决下面的问题:
(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?
(2)两人在途中行驶的速度分别是多少?
(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取植范围);
(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要化简,也不要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.

查看答案和解析>>


同步练习册答案